IPFS的基本工作原理与八层架构

IPFS的基本原理

目标

为了补充(甚至是取代)目前统治互联网的超文本传输协议(HTTP),将所有具有相同文件系统的计算设备连接在一起。IPFS想打造一个点对点的网络拓扑,相当于颠覆HTTP所代表的分布关系,它具有内容可寻址的特点,通过文件内容生成唯一的哈希标识,在一定程度上节约了空间开销的成本,我们每个人既是终端也是用户。

工作原理

每个文件及其中的所有块都被赋予一个称为加密散列的唯一指纹。

IPFS通过网络删除重复具有相同哈希值的文件,通过计算可以判断哪些文件是冗余重复的,并跟踪每个文件的版本历史记录。每个网络节点只存储它感兴趣的内容,以及一些索引信息,有助于弄清楚谁在存储什么。查找文件时,你通过文件的哈希值就可以在网络查找到储存该文件的节点,找到想要的文件。

使用称为IPNS(去中心化命名系统),每个文件都可以被协作命名为易读的名字。通过搜索,就能很容易地找到想要查看的文件。

IPFS的网络上运行着一条区块链,即用来存储互联网文件的哈希值表,每次有网络访问,即要在链上查询该内容(文件)的地址。

通过使用Filecoin的激励作用,让各节点有动力去存储数据。Filecoin是一个由加密资产驱动的存储网络。矿工通过为网络提供开放的硬盘空间获得Filecoin,而用户则用Filecoin来支付在去中心化网络中储存加密文件的费用。

八大架构

IPFS至少有八层子协议栈,从上至下为身份、网络、路由、交换、对象、文件、命名、应用,每个协议栈各司其职,又互相搭配。

身份层和路由层可以一起解释。对等节点身份信息的生成以及路由规则是通过Kademlia协议生成制定,KAD协议实质是构建了一个分布式松散Hash表,简称DHT,每个加入这个DHT网络的人都要生成自己的身份信息,然后才能通过这个身份信息去负责存储网络里的资源信息和其他成员的联系信息。如同微信名片分享,在无法通过直接搜索微信号的情况下,如果你要找一个人,可以通过有这个人联系方式的朋友分享名片来建立联系。DHT被广泛用于协调和维护关于对等系统的元数据。比如,MainlineDHT是一个去中心化哈希表,它可追踪、查找所有的对等节点。

网络层比较核心,使用的LibP2P可以支持任意传输层协议。NAT技术能让内网中的设备共用同一个外网IP,我们都体验过的家庭路由器就是这个原理。

交换层,是类似迅雷这样的BT工具。迅雷其实是模拟了P2P网络,并创建中心服务器,当服务器登记用户请求资源时,让请求同样资源的用户形成一个小集群swarm,在这里分享数据。这种方式有弊端,因为服务器是由迅雷统一维护,如果出现了故障、宕机时,下载操作无法进行。

中心化服务还会限制一些下载请求,人们发明了一种更聪明的方式就是BitTorrent,让每一个种子节点所要存储的数据,通过哈希表存储在里面,BT工具相对不太受监管,服务更加稳定。

对象层和文件层适合结合来谈,它们管理的是IPFS上80%的数据结构,大部分数据对象都是以MerkleDag的结构存在,这为内容寻址和去重提供了便利。文件层是一个新的数据结构,和DAG并列,采用Git一样的数据结构来支持版本快照。

命名层具有自我验证的特性(当其他用户获取该对象时,使用指纹公钥进行验签,即验证所用的公钥是否与NodeID匹配,这验证了用户发布对象的真实性,同时也获取到了可变状态),并且加入了IPNS这个巧妙的设计来使得加密后的DAG对象名可定义,增强可阅读性。

最后是应用层,IPFS核心价值就在于上面运行的应用程序,我们可以利用它类似CDN的功能,在成本很低的带宽下,去获得想要的数据,从而提升整个应用程序的效率。

协议实验室几大项目

Mutiformats是一系列Hash加密算法和自描述方式(从值上就可以知道值是如何生成)的集合,它具有SHA1SHA256SHA512Blake3B等6种主流的加密方式,用以加密和描述NodeID以及指纹数据的生成。

LibP2P是IPFS核心中的核心,面对各式各样的传输层协议以及复杂的网络设备,它可以帮助开发者迅速建立一个可用P2P网络层,快速且节约成本,这也是为什么IPFS技术被众多区块链项目青睐的缘由。

IPLD其实是一个转换中间件,将现有的异构数据结构统一成一种格式,方便不同系统之间的数据交换和互操作。

IPFS应用了这几个模块的功能,集成为一种容器化的应用程序,运行在独立节点上,以Web服务的形式,供大家使用访问。

Filecoin把这些应用的数据价值化,通过类似比特币的激励政策和经济模型,让更多的人去创建节点和使用IPFS。